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HARDWARE AND SOFTWARE SYSTEM OF ENVIRONMENTAL
INDICATORS MONITORING AND ANALYSIS BASED
ON ESP8266 CONTROLLER

Hardware and software systems for monitoring and analyzing environmental indicators play an important
role in the collection, analysis and understanding of data on the quality of air, water, soil and other aspects
of the environment. Monitoring systems make it possible to obtain information on pollution levels, chemical
composition, meteorological conditions and other environmental indicators. This provides an opportunity to
assess the quality of the environment, identify problem areas and take measures to reduce pollution and improve
the state of the environment. Thanks to monitoring systems, dangerous levels of pollution or chemicals in the
environment can be detected in time. This helps to prevent potential threats to human health and to take necessary
safety measures, such as evacuation or the use of protective equipment. Hardware and software systems allow
monitoring the implementation of environmental standards and regulations established by authorities. This may
include requirements for pollution levels, emissions of harmful substances, and monitoring compliance with
environmental licenses and permits. Hardware and software monitoring systems allow detection of emergency
situations, such as chemical leaks, fires or other environmental accidents. This allows to react quickly, take the
necessary measures to minimize damage and ensure the safety of the population.

The article describes the environmental data monitoring system and software methods for analyzing
temperature and air humidity data, as well as the signal level of the router with which the controller interacts.
The obtained data were analyzed and visualized using analytical tools of the Python programming language.
A correlation was found between temperature and humidity parameters, time periods of emergency shutdowns
of the monitoring system due to emergency power outages, as well as time periods when the signal level was
reduced due to the presence of people in the room for a selected period of time. The Google Colab cloud
environment was used for data analysis. The technical characteristics of the monitoring system installed in
Cherkasy city based on the ESP8266+HTU21 controller are described.

Key words: streaming data, Python, environmental monitoring, temperature and humidity sensor, Wi-Fi
signal level sensor, Internet of Things (loT), ESP8266+HTU21.

Introduction. Problem Statement. The pollution,identify sources of contamination, and make

importance of systems for monitoring and analyzing
environmental indicators lies in the fact that they
provide objective information necessary for making
decisions about environmental protection, ensuring
safety and creating sustainable environmental
conditions for future generations. Air quality
monitoring helps assess the environmental impact of
various sources of pollution such as industrial plants,
transportation systems, energy, etc. This provides
a basis for making decisions to improve efficiency,
eradicate hazardous sources of pollution and promote
sustainable development. Air quality monitoring
plays a crucial role in evaluating the environmental
impact of industrial plants, transportation systems
and energy production. By monitoring air quality,
decision-makers can gather data to assess the level of
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informed decisions to enhance efficiency and promote
sustainable development. This information serves as
a foundation for implementing measures to eliminate
hazardous pollution sources, improve air quality, and
protect human health and the environment.

Related research. Researchers continuously
improve sensor technologies for air quality
monitoring, focusing on accuracy, precision, and
reliability. They use monitoring data to create
detailed air pollution maps, identify hotspots, and
understand pollutant dispersion [1]. Integration
with GIS and predictive models helps estimate
pollution levels in unmonitored areas [2]. Studies
on health effects analyze the relationship between
pollutant concentrations and respiratory diseases,
cardiovascular issues, and mortality rates, aiding
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in policy development [3]. Source apportionment
models identify pollution sources, supporting
targeted emission control [4]. Citizen science
engages communities in monitoring, validating data,
raising awareness, and influencing policies for better
air quality [5]. ESP8266 based mesh network for
smart monitoring systems was described, but usualy
physical LR radio on the L1(L2) for range extension
and sensivity increase was not imployed [6].
NodeMCU and different IoT Cloud implementation
in the authors articles cycle was described [7].
Platform choice, power consumption in the mash
modes and timeings were optimized rarely.

The main goal of the article is software analysis
of streaming data of the environmental indicators
monitoring system, in particular, air temperature and
humidity and wireless network data transmission
signal level in conditions of emergency power outages.

Existing software solutions for sensor data
analysis. ThingSpeak is an IoT platform for
collecting, analyzing, and visualizing sensor data.
It integrates with various loT platforms, supports
MATLAB for advanced analysis, and offers APIs for

A

easy integration with other applications. It's open-
source with an active user community. Analogues to
ThingSpeak include InfluxDB, a time-series database
for sensor data analysis, Grafana for visualization,
AWS JoT Analytics for scalable data processing and
analysis, and Microsoft Azure loT Hub for managing
sensor data and integration with Azure services.

Research results. The authors use Google Colab
cloud computing and Python programming language
technologies to analyze streaming data from online
platforms to which data from sensors are sent. The
sensor based on ESP8266+HTU21, which was installed
in August 2022 in the Cherkasy city [8] (Fig. 1).

The sensor is designed to measure the temperature
and humidity of the air, in addition, it records the
strength of the Wi-Fi network signal and the voltage
level of the battery [9].

Consider the technical characteristics of the IoT
system based on ESP8266+HTU21 microcontroller
(Fig. 2). The pinout of the ESP8266 microcontroller
is shown in Fig. 3.

HTU21 temperature and air humidity sensor is
connected to the ESP8266 microcontroller (Fig. 4).
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Fig. 1. Installation and connection to the Internet sensor based on ESP8266+HTU21
in the Cherkasy city [8, 9]
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Fig. 4. HTU21 sensor

The connection diagram of the HTU21 sensor
to the ESP8266 microcontroller is shown in Fig. 5.

Fig. 5. Connection diagram of ESP8266 with HTU21
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To analyze the sensor data, we use the data dataset
D4376-20220826-20221114-1H.csv, obtained
from this sensor in the period from August to mid-
November 2022. Consider the volume and basic
statistical information about the dataset (minimum,
maximum, average value, etc.), visualize the data
using the capabilities of the Python programming
language. To perform this task, we use an [Python
notebook in the Google Colab cloud computing
environment.

Google Colab is a cloud-based tool that provides
free access to computing power, memory, and GPUs
to run Python software code without having to install
hardware on computer. Using Colab, developers can
work on CPU/GPU-intensive tasks such as machine
learning and big data analytics. Colab users get free
access to powerful graphics processing units (GPUs)
and tensor processing units (TPUs) for their tasks.
In addition, Colab includes a wide range of popular
Python libraries such as NumPy, Pandas, Matplotlib,
PyTorch, TensorFlow, Keras and allows to install
other libraries as needed. Files can be stored on
Google Drive, which allows for easy recovery from
any computer and provides data backup.

Before uploading the provided dataset to Google

Colab, we import the necessary Python libraries:
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
%matplotlib inline

We download the received dataset of indicators
that were recorded by the temperature and humidity
sensor. Since the file was received in CSV format,
the appropriate function was used to load it into a
dataframe. Since in the provided CSV file a semicolon
was used as a separator instead of a comma, we
specify the separator ";" in the import parameters:

pathToWeather‘Dataset = '/content/drive/MyDrive/
data_colab/D4376-20220826-20221114-1H.csv'

weatherSensorDf = pd.read_csv(pathToWeatherDataset,
sep=";")

We check the correctness of the import by
displaying the first five records in the dataframe:

weatherSensorDf.head()

The content of the CSV file was correctly loaded
into the dataframe. The table has seven columns:
UNIXTIME, Date, Time, TEMP, HUMD, RSSI, VCC.
The Date and Time columns are responsible for the
date and time of taking the indicator, and duplicate the
information from the UNIXTIME column, in which
the date and time are presented in UNIX timestamp
format. We add a new TIMESTAMP column to the
dataframe, into which we copy the values from the
UNIXTIME column and convert them to the Python
datetime type by applying the appropriate function:
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weatherSensorDf[ 'TIMESTAMP' ] =
datetime(weatherSensorDf[ 'UNIXTIME'],
utc=True).dt.tz_convert('Europe/Kyiv")
weatherSensorDf

The new TIMESTAMP column in the dataframe
now contains correct information about the date and
time of recording the sensor indicators in a readable
format. Now the UNIXTIME, Date, Time columns are
not needed, as they duplicate the existing information in
the TIMESTAMP column. Therefore, we remove these

columns UNIXTIME, Date, Time from the dataframe:
weatherSensorDf.drop([ 'UNIXTIME', 'Date ', 'Time'],
axis=1, inplace=True)

pd.to_
unit="'s",

weatherSensorDf.head()

TEMP  HUMD RS5I VCC TIMESTAMP
0 2094 6970 -41.00 3.1 2022-08-27 22:00:00+03:00
1 2151 6206 -4217 3.1 2022-08-27 23:00:00+03:00
2 2045 6852 -43.42 31 2022-08-28 00:00:00+03:00
3 2015 6938 -4475 3.1 2022-08-28 01:00:00+03:00
4 1968 7085 -46.45 3.1 2022-08-28 02:00:00+03:00

So, five columns in the dataframe are obtained.
The TEMP column indicates the outdoor temperature
in degrees Celsius, the HUMD column indicates the
relative humidity in percent. The RSSI column is
an indicator of the power level of the Wi-Fi signal
(through which the recorded data is sent) arriving
at the sensor antenna, the VCC column displays the
voltage of the batteries that power this sensor in volts,
the TIMESTAMP column displays the date and time
the sensor recorded the indicators. We find out how
many records of sensor measurements are available

in the data frame:
len(weatherSensorDf)

The dataset contains 1392 records. That is, the
volume of the dataset is 1392 rows, and the number of
columns is 5. We check the data types of each column
in the dataset and make sure that there are no missing

values in the rows:
weatherSensorDf.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1392 entries, @ to 1391
Data columns (total 5 columns):
# Column Non-Null Count Dtype
© TEMP 1392 non-null float64
1 HUMD 1392 non-null float64
2 RSSI 1392 non-null float64
3 VCC 1392 non-null float64
4 TIMESTAMP 1392 non-null datetime64[ns, Europe/Kyiv]
dtypes: datetime64[ns, Europe/Kyiv](1), float64(4)
memory usage: 54.5 KB

Therefore, there are no missing values in the table.
Therefore, there is no need to filter the dataframe to
exclude empty rows. As we can see, the data type for the

TIMESTAMP column is datetime, that is, the conversion
was done correctly. We also learn basic statistical
information: minimum, maximum, average value, etc:

weatherSensorDf.describe()

TEMP® HLIFI} Rh%l L
count 135 ODMKK) 13890 (DM 1352 DD 13592 (DMK
ma&an 13461602 72639325 =T2.403247 3097399

std 5.6416591 17412619 S5.452205 0.004804
min 1. 470000 23, 540000 =& . B30000 23,00 0000
26% 5 B0 H00 B4 2O0HNH) i 200 3 TN
50% 12. 960000 79600000 =72.200000 3.100000
T5% 16.572500 90.172500 -70.080000 3.100000
max ATATO000 1041180000 =41.000000 3100000

We see that the maximum value of the temperature
is 37.37 °C, and the minimum is 1.41 °C. The average
value is 13.462 °C. The same information can be
viewed about other columns. In addition, in the
above statistical information, we can see the value
of the standard deviation, percentiles of the level of
25%, 50%, 75%. We visualize the sensor data using
the capabilities of the Python language. To do this,
we plot the dependence of all four measured values
(TEMP, HUMD, RSSI, VCC) on the date and time of
their fixation. To do this, we create a separate function

that create a graph with the appropriate signatures:

def plot_weather_sensor_data(column_name: str,
column_label: str, color: str):

fig, ax = plt.subplots(figsize=(20, 5))

ax.plot(weatherSensorDf["TIMESTAMP"],
weatherSensorDf[column_name], f'{color}o-"',
markersize=3)

plt.xticks(rotation=90)

ax.xaxis.set_major_locator(mdates.DayLocator())

ax.xaxis.set_minor_locator(mdates.
HourLocator(interval=12))

ax.xaxis.set_major_formatter(mdates.
DateFormatter('%d.%m"))

plt.ylabel(column_label, fontsize=15)

plt.xlabel('Timestamp', fontsize=15)

plt.show()

We have the following four graphs that visualize
the dependence temperature (°C), relative humidity
(%), Wi-Fi signal power level (dBm), battery voltage
(V) versus time, respectively (Fig. 6, 7, 8, 9):

plot_weather_sensor_data("TEMP", "Temperature, °C", "g")

plot_weather_sensor_data("HUMD", "Humidity, %", "r")
plot_weather_sensor_data("RSSI", "RSSI, dBm", "m")
plot_weather_sensor_data("vcC", "vCC, V", "b")

As we can see in the graphs above, there was one
long period (around September 10—13, 2022) where
there was no power, so the sensor was unable to
capture the relevant readings at that time and send
them over the Wi-Fi network.

We find the correlation between temperature
and humidity parameters. To perform this task, we
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Fig. 8. Dependence of Wi-Fi signal power level (dBm) on time

again use an [Python notebook in the Google Colab  value, we use the Pearson method. Having received
environment. To build a heat map, we import the the correlation matrix, we build a heat map for it
Seaborn library: to see more clearly which variables are correlated

import seaborn as sns (Fig. 10). The lighter the color, the more the two
We choose the period from 08/27/22 to 11/13/22.  yariables are correlated, and the darker the color,

We build a correlation matrix for parameters: TEMP, respectively, the opposite, that is, they are less
HUMD, RSSI, VCC. To determine the correlation  qrrelated or not correlated at all:

88 Tom 34 (73) N2 4 2023
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Fig. 10. Correlation matrix for parameters: TEMP, HUMD, RSSI, VCC

weatherSensorDfCorr = weatherSensorDf.
corr(method="pearson')
weatherSensorDfCorr

We are investigating the correlation between
temperature and humidity parameters, so we consider
these two parameters. It can be seen that the parameters
of temperature and humidity have a correlation with
a value of -0.602, that is, it is a moderately negative
(negative) correlation. From this it follows that with
an increase in temperature, the relative humidity of the
air can sometimes decrease. There is a certain logic
in this, because as the temperature increases, water
evaporates more actively, so the air is drier. Also,
the obtained moderate correlation can be explained
by the fact that in autumn, when the temperature
decreased, there was a lot of rain, as a result of which
the humidity was higher. We construct a dot diagram
of the dependence of relative air humidity on air

temperature (Fig. 11):
y = weatherSensorDf["HUMD" ]
X = weatherSensorDf["TEMP"]
plt.figure(figsize=(20,10))
plt.scatter(x, y)
plt.ylabel('Humidity, %', fontsize=20)
plt.xlabel( ' Temperature, °C', fontsize=20)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.show()

Fig. 11. The dependence of relative air humidity
on air temperature

From the resulting diagram of the dependence
of relative air humidity on air temperature, it can
be seen that, indeed, at higher air temperatures, air
humidity is often less important. We find out when
emergency sensor shutdowns occurred. To perform
this task, we again use the IPython notebook in the
Google Colab environment. As we can see above,
the sensor in normal mode sends readings once an
hour. Therefore, in order to determine emergency
shutdowns, it is necessary to find the largest gaps
in time between fixing the sensor indicators. Since
the recorded indicators of the sensor are stored in
chronological order, it be enough to compare the
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recording time in each pair of saved indicators in the

data frame.
startTimestamp = weatherSensorDf["TIMESTAMP"].min()
endTimestamp = weatherSensorDf["TIMESTAMP"].max()
countDays = (endTimestamp - startTimestamp).days + 1
fig, ax = plt.subplots(figsize=(20, 5))
n, bins, patches = ax.hist(weatherSensorDf["TIMESTAMP"],
countDays, rwidth=0.9)
plt.xticks(rotation=90)
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
ax.xaxis.set_major_locator(mdates.DayLocator())
ax.xaxis.set_major_formatter(mdates.
DateFormatter('%d.%m"))
ax.yaxis.grid()
plt.ylabel('Number of measurements', fontsize=15)
plt.xlabel('Day and month', fontsize=15)
plt.ylim(@, 24)
plt.xlim(startTimestamp, endTimestamp)
plt.show()

For a visual presentation, we build a histogram,
where for each day we display how many indicators
were recorded.

If 24 indicators were recorded in one day, this
means that the sensor worked around the clock and
there were no emergency shutdowns (Fig. 12):

As we can see from the histogram above, only at the
beginning of the measurements, in August, the sensor

Number of measurements

RSSI, dBm

worked absolutely around the clock. Starting from
September, we can see that there was no electricity
for 4-5 hours on average. At the same time, we can
see fairly large blackouts, there is even one the size of
several days. We write a function that iterate through
all recorded values in the dataframe and look for
breaks in measurements of more than one hour. Next,
we sort these interruptions in measurements by the
largest interval in hours. We assume that emergency

outages are those outages that last 10 hours or more:

last_timestamp = None

gaps = []

for index, measure in weatherSensorDf.iterrows():

current_timestamp = measure["TIMESTAMP"]

if last_timestamp == None:

last_timestamp = current_timestamp

continue

hours_diff = int((current_timestamp - last_timestamp).
total_seconds())//3600

if hours_diff > 1:

gaps.append((hours_diff, last_timestamp, current_
timestamp))

last_timestamp = current_timestamp

gaps.sort(key=lambda x: x[@], reverse=True)

print("Electricity outages (>= 10 hours):")

for row in gaps:

if row[0] < 10:

break
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print(f"Duration:
%H:%MINtTill: {row[2]:%d.%m %H:%M}")
Electricity outages (>= 10 hours):

Duration: 72
Duration: 15
Duration: 10

Duration: 10

From:
From:
From:

From:

{row[@]}\tFrom:

10.09 15:00Till:
31.10 08:00Till:
25.09 20:00Till:

09.10 20:00Till:

{row[1]:%d.%m

13.09 15:00
31.10 23:00
26.09 06:00

10.10 06:00

There were a total of four emergency shutdowns

that lasted 10 hours or more.
72 hours without light: from 10.09 15:00 to 13.09 15:00
15 hours without light: from 31.10 08:00 to 31.10 23:00
10 hours without light: from 25.09 20:00 to 26.09 06:00
10 hours without light: from ©9.10 20:00 to 10.10 06:00

‘We find when there was a decrease in the signal level
due to the presence of people in the room for a given
period of time. To perform this task, we again use an
[Python notebook in the Google Colab environment.
We set the period of time in which the research should
be conducted. We filter the dataset to get data for, for

example, the fourth week of sensor operation:
firstTimestamp = weatherSensorDf["TIMESTAMP"].min()
week = 4
startTimestamp = firstTimestamp +
timedelta(weeks=(week - 1))
endTimestamp = firstTimestamp +
timedelta(weeks=week)
weatherSensorDfFiltered = weatherSensorDf[
(weatherSensorDf[ "TIMESTAMP"] >= startTimestamp) &
(weatherSensorDf["TIMESTAMP"] <= endTimestamp)]
weatherSensorDfFiltered

Therefore, 130 measurements were obtained dur-
ing the fourth week of sensor operation. We visualize
the filtered data from the data frame and we plot a
graph of the dependence of the Wi-Fi signal power

level on time in a given period of time (Fig. 13):
fig, ax = plt.subplots(figsize=(20, 5))
ax.plot(weatherSensorDfFiltered["TIMESTAMP"],
weatherSensorDfFiltered[ "RSSI"], 'mo-"')
plt.xticks(rotation=90)
ax.xaxis.set_major_locator(mdates.
HourlLocator(interval=4))
ax.xaxis.set_minor_locator(mdates.HourLocator())
ax.xaxis.set_major_formatter(mdates.
DateFormatter('%d.%m %H:%M", tz=pytz.timezone('Europe/
Kyiv')))
plt.ylabel('RSSI, dBm', fontsize=15)
plt.xlabel('Timestamp', fontsize=15)
plt.show()

We create a function that go through all the
recorded values in the data frame and look for those
values of the Wi-Fi signal strength level that be less
than or equal to -75 dBm. We assume that due to
people in the room, the Wi-Fi signal should drop to a
level of -75 dBm or below:

low_signals = [] for index, measure in
weatherSensorDfFiltered. iterrows():

current_rssi = measure["RSSI"]

if current_rssi <= -75:

current_timestamp = measure["TIMESTAMP"]

next_timestamp = current_timestamp + timedelta(hours=1)

current_row = [[current_rssi], current_timestamp, next_timestamp]

len_low_signals = len(low_signals)

if len_low_signals > @ and low_signals[len_low_signals -
1][2] == current_timestamp:

low_signals[len(low_signals) - 1][@].append(current_rssi)

low_signals[len(low_signals) - 1][2] = next_timestamp

else:

low_signals.append(current_row)

print("Lowering the Wi-Fi signal strength (RSSI <= -75):")

for row in low_signals: rssi_mean = pd.DataFrame(row[0]).
mean()[0]

print(f"RSSI: {rssi_mean:.2f}\tFrom: {row[1]:%d.%m
JH:MINtTill: {row[2]:%d.%m %H:%M}")

Lowering the Wi-Fi signal strength (RSSI <= -75):

RSSI: -75.33  From: 17.09 22:00 Till: 17.09 23:00
RSSI: -79.83 From: 18.09 11:00 Till: 18.09 12:00
RSSI: -76.42 From: 18.09 21:00 Till: 18.09 23:00
RSSI: -75.59 From: 19.09 13:00 Till: 19.09 15:00
RSSI: -77.71  From: 19.09 16:00 Till: 19.09 18:00
RSSI: -79.00 From: 20.09 06:00 Till: 20.09 07:00
RSSI: -76.58 From: 21.09 19:00 Till: 21.09 20:00
RSSI: -76.88 From: 22.09 15:00 Till: 22.09 17:00
RSSI: -77.33  From: 22.09 19:00 Till: 22.09 20:00
RSSI: -76.17 From: 23.09 13:00 Till: 23.09 14:00

We combine the intervals in which the break in
time is one or two hours, because we consider the
reason for the separation of such intervals to be the
measurement error. So, there were only eight people
present in the room during the 4th week of opera-
tion of the device (from 09/17 22:00 to 09/24 22:00),
because the Wi-Fi signal strength level dropped to
-75 dBm or lower:

From: 17.09 22:00 to: 17.09 23:00; average RSSI
value: -75.33 dBm

From: 18.09 11:00 to: 18.09 12:00; average RSSI
value: -79.83 dBm

From: 18.09 21:00 to: 18.09 23:00; average RSSI
value: -76.42 dBm

From: 19.09 13:00 to: 19.09 18:00; average RSSI
value: -76.65 dBm

From: 20.09 06:00 to: 20.09 07:00; average RSSI
value: -79.00 dBm

From: 21.09 19:00 to: 21.09 20:00; average RSSI
value: -76.58 dBm

From: 22.09 15:00 to: 22.09 20:00; average RSSI
value: -77.11 dBm

From: 23.09 13:00 to: 23.09 14:00; average RSSI
value: -76.17 dBm

Conclusions and future work. The article
describes the hardware and software system based on
the ESP8266 controller. Software methods are used
to analyze data on temperature and air humidity, as
well as the signal level of the router with which the
controller interacts. The obtained data were analyzed
using analytical tools of the Python programming
language. A correlation was found between
temperature and humidity parameters, time periods
of emergency shutdowns of the monitoring system
due to emergency power outages, as well as time
periods when there was a decrease in the signal level
to account for the presence of people in the case of
selected time intervals.

In the future, the authors plan to optimize the
runtime when connecting and polling sensor sets to
enable long battery life in offline mode. The cycle is
scheduled as follows: wakeup, connect, fast connect
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with settings without DHCP, DNS and other timers, core, deep sleep. The equipment is planned to be
check sensors, request, send data, ACK, properly designed without interface converters, LDOs, only
prepare for sleep with port modes and stop the main ~ MCU, sensors, BMS, battery, charger, solar charger.
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Ouemenko JI.M., MomeHncbkuii A.O. AITAPATHO-IIPOI'PAMHA CUCTEMA MOHITOPUHI'Y
TA AHAJII3Y ITIOKA3ZHUKIB HABKOJIMIIHBOTI'O CEPEJJOBHUIIIA HA OCHOBI
KOHTPOJIEPA ESP8266

Anapamuo-npoepamui cucmemu MOHIMOPUHZY MA AHANIZY NOKASHUKIG HABKOMUWHBLO20 Cepedosunya
gidieparomyv 6adCIUBY poib Yy 300pi, AHANi3l OAHUX NPO AKICMb NOGIMPs, 800U, IDYHMY MA THUUX ACNEeKMi8
HABKOMUWHBb020 cepedoguuia. Taxi cucmemu MOHIMOPUHEY 0036018I0Mb OMPUMYBAMU 8iI0OMOCTI NPO PIGHI
3a0pYOHeHH s, XIMIUHUL CKIA0, Memeoporo2iuHi YMO8U MA [HULl NOKA3HUKU HABKOIUWHBLO2O Cepedosuiyd.
Lle naodae moxciugicmo oyinumu AKicmv cepedosuya, UABUMU NPOOIEMHI 30HU MA BIHCUMU 3aX00I8 O
3MeHwen s 3a0pyOHeHHs. ma NOKPAWEHH CMAaHy OO06KIIA. 3a60aKu cucmemMam MOHIMOPUHSY MOJICHA
BUACHO GUAGNAMU Hebe3neuni pieHi 3a0pyOHeHHs a0 Ximiunux pewosun y cepedosuwyi. Lle donomazcae
3anobiemu nNOMeHYItHUM 3a2po3am 0isl 300p08's 0dell ma NPUNHAMYU Maki 3axo0u besnexu, sIK eeaxyayisn
abo 3acmocy8aHmsi 3aXUCHO20 00NAOHAHMSA. Anapamuo-npocpamui cucmemu 0038018I0Mb KOHMPOTIOBAMU
BUKOHAHHSL eKONOSTYHUX CTNAHOAPMIE MA HOPMAMUBIE, 6CMAHOBNIEHUX OP2AHAMU 61A0U, 30KpeMd, GUMO2U OO
PIBHI8 3a0pyOHeH s, GUKUOIE WKIONUBUX PEYOBUH, d MAKONC MOHIMOPUHE OOMPUMAHHS eKOLOTUHUX JiYeH3ill
ma 003601i6. AnapamHo-npoepamui cucmemy MOHIMOPUHZY 00360AI0Mb GUAGIAMU HAO3GUYALIHI cumyayii,
MaKi K UMOKU XIMIMHUX PeyosUH, nodcedici abo iHwi exonoeiyni asapii. Lle 0oz6onse wseudko peazysamu,
sarcuBAMU HeOOXIOHUX 3ax00i8 O MIHIMIZayil 30umkKie ma 3abe3neuents Oe3neKu HaAceneHHs.

Y cmammi onucano nobydosany asmopamu anapamHo-npocpPAMHYy CUCHEMY MOHIMOPUHZY OaHUX
HABKOTUWHBO20 CepedosUIyd Ma NPOSPAMHI MEMOOU AHANIZY OAHUX MeMnepamypu ma 601020Cmi NOGimps, a
MAKOIC PiBeHb CUSHATY MAPWPYMU3AMOPA, 3 AKUM 83aEMO00ie Konmpoinep. [Ipoananizosano ma i3yanizo8aro
OMPUMAHT OaHI 3a OONOMO2010 AHANIMUYHUX IHCIMPYMEHmMie Mogu npoepamysanns Python. 3naiideno kopensyiro
MIC napamempamu memnepamypu ma 601020Cmi, nepioou 4acy aapitiHux GiOKIHYEeHb MOHIMOPUH2080I
cucmemu GHACHIOOK eKCMpeHUX GiOKNIOUeHb eleKmpoeHepeii, a makodic nepioou 4acy, Koau 6i00yeanocw
SHUMCEHHS PIGHA CUSHATTY 34 PAXYHOK NPUCYMHOCMI 100l 6 NpuMiwjeHHi 3a 00panuti npomixcox yacy. [ns
aumanizy damux euxopucmano xmapue cepedosuuge Google Colab. Onucano mexuiuni xapaxmepucmuxu
sécmarnosnenol y m. Yepracu monimopuneosoi cucmemu Ha 6aszi konmponepa ESP8266+HTU21.

Knwwuogi cnosa: nomokosi Ooawni, Python, monimopune cmamy HABKOIUWHBO2O Cepedosuid, Oamyux
memnepanmypu ma 80020cmi nogimpsi, damuux piensi cuenany Wi-Fi, Inmepuem peueii, ESP8266+HTU21.

Q2 Tom 34 (73) N2 4 2023



